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Forces, 1965, 40) that three-body forces are also significant for solid argon,

Unfortunately, at the present time the three-body forces are not sufficiently

well known in the neighbourhood of the potential minimum to }K’rmi’r

an accurate caleulation of the elastic constants.  We shall therefore adopt
a phenomenological model, with central two-body forces acting between
nearest neighbours only. The particular two-body potential that we shall
subsequently use can best be regarded as an effective potential, including
many-body effects in a crude fashion since the parameters of our two-body
potential will always be fitted to experiment. The advantage of the
nearest -neighbour model is that the explicit temperature dependence of the
elastic constants can be caleulated essentially exactly for this model.
Some time ago. Barron and Domb (1954) used this model to calculate the
static-lattice contribution to the polycrystalline elastic constants.

We have recently calculated the explicit temperature dependence
of the fc.c. lattice with an arbitrary nearest-neighbour central force,
$(r). For a particular choice of 4(r). say, a Mie-Lennard—Jones (m-5)
potential, our calculations give the elastic constants which can then be
compared directly with single-crystal measurements. However. in
order to compare our calculations with the work of Jones and Sparkes
(1964) and Lawrence and Neale (1965) we must first pass from results for
the single crystal to the polyerystalline material. The method of
averaging the single crystal elastic constants is discussed in the next
section and a brief outline of our calculation is given in §3. In §4 our
calculations are compared with the available experimental data. The
calculations presented in this paper can be regarded as extending the
work of Barron and Domb (1954) and Barron and Klein (1965) to finite
temperatures. We shall see that the overall agreement of experiment
with our Mie-Lennard—Jones nearest-neighbour model is quite reasonable.

§ 2. PoLYCRYSTALLINE Erastic CONSTANTS
For a cubic erystal there are only three independent elastic constants
€11, €12 and ¢y, The relationship of these to the elastic constants of an
isotropic polycrystalline aggregate has been discussed by Hill (1952).
Fora cubic crystal the bulk modulus, K, is unaltered and the shear modulus,
@, becomes an average of the two independent shear constants ¢,y and
1(c—¢yp). Upper and lower limits of the polycrystalline shear constant.
@, are given by the approximations of Voigt and Reuss, defined by :
Gy = (11— €12+ 364) /5,
Gy — Gy =3[0 — (0,3 —12) I*/5[ 4045 + 3(c1y — 612 ).
In all that follows we shall work with the arithmetic mean of Gy and g
The velocities of longitudinal and transverse waves in the polyerystal
are given by:
pVE=K+(%)G, pV3=0,
where p is the crystal density. At 0°%, Horton and Leech (1963) have
suggested an alternative method of averaging by using the zero-temperaturt
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Debye theta and the zero-temperature bulk modulus, Barron and
Klein (1965) showed that Horton and Leech’s method agrees with the
above mentioned procedure to better than 29, . Thus we can have some
confidence in our averaging procedure. Horton and Leech’s averaging
procedure is not applicable to finite temperatures: so we shall not use it
here.

§ 3. CarcuraTiox oF THE Enastic ConsTaNTs
We have calculated the elastic constants from the equation

a*d
VS, = (m)o £ g( Buger® V= y iy, Wi T e 01},

_ 1 a(u) 8 1 Pw
=% (a"_-a g e ‘:(aumﬂa“ov)ﬂ ’

Here @ is the static lattice energy, assumed to be the sum of pairwise
additive contributions, e% and ¢,% are the internal energy and specific
heat contributions from the mode w?% and y_, and 3,,,, describe the
dependence of the normal mode frequencies on the homogenous strain
parameters {u}. In the actual calculation y, and 8, have been
evaluated to second order in perturbation theory.

where
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Temperature dependence of the polyerystalline shear modulus of solid argon.
The circles are derived from the work of Jones and Sparkes (1964),  The
0°k value is taken from Peterson ef al. (1966). The smooth curve is
calculated for a Mie-Lennard—Jones (12-6) nearest-neighbour model.




